THE SEQUENTIAL REJECTION PRINCIPLE OF FAMILYWISE ERROR CONTROL
成果类型:
Article
署名作者:
Goeman, Jelle J.; Solari, Aldo
署名单位:
Leiden University; Leiden University Medical Center (LUMC); Leiden University - Excl LUMC; University of Padua
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/10-AOS829
发表日期:
2010
页码:
3782-3810
关键词:
multiple testing procedures
BONFERRONI PROCEDURE
clinical-trials
摘要:
Closed testing and partitioning are recognized as fundamental principles of familywise error control. In this paper, we argue that sequential rejection can be considered equally fundamental as a general principle of multiple testing. We present a general sequentially rejective multiple testing procedure and show that many well-known familywise error controlling methods can be constructed as special cases of this procedure, among which are the procedures of Holm, Shaffer and Hochberg, parallel and serial gatekeeping procedures, modern procedures for multiple testing in graphs, resampling-based multiple testing procedures and even the closed testing and partitioning procedures themselves. We also give a general proof that sequentially rejective multiple testing procedures strongly control the familywise error if they fulfill simple criteria of monotonicity of the critical values and a limited form of weak familywise error control in each single step. The sequential rejection principle gives a novel theoretical perspective on many well-known multiple testing procedures, emphasizing the sequential aspect. Its main practical usefulness is for the development of multiple testing procedures for null hypotheses, possibly logically related, that are structured in a graph. We illustrate this by presenting a uniform improvement of a recently published procedure.