NONPARAMETRIC INFERENCE OF QUANTILE CURVES FOR NONSTATIONARY TIME SERIES
成果类型:
Article
署名作者:
Zhou, Zhou
署名单位:
University of Toronto
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/09-AOS769
发表日期:
2010
页码:
2187-2217
关键词:
simultaneous confidence bands
linear-regression
model checks
bootstrap
fit
摘要:
The paper considers nonparametric specification tests of quantile curves for a general class of nonstationary processes. Using Bahadur representation and Gaussian approximation results for nonstationary time series, simultaneous confidence bands and integrated squared difference tests are proposed to test various parametric forms of the quantile curves with asymptotically correct type I error rates. A wild bootstrap procedure is implemented to alleviate the problem of slow convergence of the asymptotic results. In particular, our results can be used to test the trends of extremes of climate variables, an important problem in understanding climate change. Our methodology is applied to the analysis of the maximum speed of tropical cyclone winds. It was found that an inhomogeneous upward trend for cyclone wind speeds is pronounced at high quantile values. However, there is no trend in the mean lifetime-maximum wind speed. This example shows the effectiveness of the quantile regression technique.