EXACT CALCULATIONS FOR FALSE DISCOVERY PROPORTION WITH APPLICATION TO LEAST FAVORABLE CONFIGURATIONS
成果类型:
Article
署名作者:
Roquain, Etienne; Villers, Fanny
署名单位:
Universite Paris Cite; Sorbonne Universite
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/10-AOS847
发表日期:
2011
页码:
584-612
关键词:
fdr control
EMPIRICAL BAYES
INDEPENDENCE
dependency
tests
摘要:
In a context of multiple hypothesis testing, we provide several new exact calculations related to the false discovery proportion (FDP) of step-up and step-down procedures. For step-up procedures, we show that the number of erroneous rejections conditionally on the rejection number is simply a binomial variable, which leads to explicit computations of the c.d.f., the sth moment and the mean of the FDP, the latter corresponding to the false discovery rate (FDR). For step-down procedures, we derive what is to our knowledge the first explicit formula for the FDR valid for any alternative c.d.f. of the p-values. We also derive explicit computations of the power for both step-up and step-down procedures. These formulas are explicit in the sense that they only involve the parameters of the model and the c.d.f. of the order statistics of i.i.d. uniform variables. The p-values are assumed either independent or coming from an equicorrelated multivariate normal model and an additional mixture model for the true/false hypotheses is used. Our approach is then used to investigate new results which are of interest in their own right, related to least/most favorable configurations for the FDR and the variance of the FDP.