DELTA METHOD IN LARGE DEVIATIONS AND MODERATE DEVIATIONS FOR ESTIMATORS

成果类型:
Article
署名作者:
Gao, Fuqing; Zhao, Xingqiu
署名单位:
Wuhan University; Hong Kong Polytechnic University; Zhongnan University of Economics & Law
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/10-AOS865
发表日期:
2011
页码:
1211-1240
关键词:
limit-theorems EFFICIENCY
摘要:
The delta method is a popular and elementary tool for deriving limiting distributions of transformed statistics, while applications of asymptotic distributions do not allow one to obtain desirable accuracy of approximation for tail probabilities. The large and moderate deviation theory can achieve this goal. Motivated by the delta method in weak convergence, a general delta method in large deviations is proposed. The new method can be widely applied to driving the moderate deviations of estimators and is illustrated by examples including the Wilcoxon statistic, the Kaplan-Meier estimator, the empirical quantile processes and the empirical copula function. We also improve the existing moderate deviations results for M-estimators and L-statistics by the new method. Some applications of moderate deviations to statistical hypothesis testing are provided.