NONPARAMETRIC LEAST SQUARES ESTIMATION OF A MULTIVARIATE CONVEX REGRESSION FUNCTION
成果类型:
Article
署名作者:
Seijo, Emilio; Sen, Bodhisattva
署名单位:
Columbia University
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/10-AOS852
发表日期:
2011
页码:
1633-1657
关键词:
maximum-likelihood-estimation
log-concave density
Consistency
monotone
摘要:
This paper deals with the consistency of the nonparametric least squares estimator of a convex regression function when the predictor is multidimensional. We characterize and discuss the computation of such an estimator via the solution of certain quadratic and linear programs. Mild sufficient conditions for the consistency of this estimator and its subdifferentials in fixed and stochastic design regression settings are provided.