OPTIMAL MODEL SELECTION FOR DENSITY ESTIMATION OF STATIONARY DATA UNDER VARIOUS MIXING CONDITIONS

成果类型:
Article
署名作者:
Lerasle, Matthieu
署名单位:
Universite Federale Toulouse Midi-Pyrenees (ComUE); Universite de Toulouse; Institut National des Sciences Appliquees de Toulouse; Universite Toulouse III - Paul Sabatier; Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI)
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/11-AOS888
发表日期:
2011
页码:
1852-1877
关键词:
risk bounds penalties
摘要:
We propose a block-resampling penalization method for marginal density estimation with nonnecessary independent observations. When the data are beta or tau-mixing, the selected estimator satisfies oracle inequalities with leading constant asymptotically equal to 1. We also prove in this setting the slope heuristic, which is a data-driven method to optimize the leading constant in the penalty.