GLOBAL TESTING UNDER SPARSE ALTERNATIVES: ANOVA, MULTIPLE COMPARISONS AND THE HIGHER CRITICISM

成果类型:
Article
署名作者:
Arias-Castro, Ery; Candes, Emmanuel J.; Plan, Yaniv
署名单位:
University of California System; University of California San Diego; Stanford University; California Institute of Technology
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/11-AOS910
发表日期:
2011
页码:
2533-2556
关键词:
uncertainty principles DECOMPOSITION variance signals
摘要:
Testing for the significance of a subset of regression coefficients in a linear model, a staple of statistical analysis, goes back at least to the work of Fisher who introduced the analysis of variance (ANOVA). We study this problem under the assumption that the coefficient vector is sparse, a common situation in modern high-dimensional settings. Suppose we have p covariates and that under the alternative, the response only depends upon the order of p(1-alpha) of those, 0 <= alpha <= 1. Under moderate sparsity levels, that is, 0 <= alpha <= 1/2, we show that ANOVA is essentially optimal under some conditions on the design. This is no longer the case under strong sparsity constraints, that is, alpha > 1/2. In such settings, a multiple comparison procedure is often preferred and we establish its optimality when alpha >= 3/4. However, these two very popular methods are suboptimal, and sometimes powerless, under moderately strong sparsity where 1/2 < alpha < 3/4. We suggest a method based on the higher criticism that is powerful in the whole range alpha > 1/2. This optimality property is true for a variety of designs, including the classical (balanced) multi-way designs and more modern p > n designs arising in genetics and signal processing. In addition to the standard fixed effects model, we establish similar results for a random effects model where the nonzero coefficients of the regression vector are normally distributed.