GENERAL THEORY FOR INTERACTIONS IN SUFFICIENT CAUSE MODELS WITH DICHOTOMOUS EXPOSURES

成果类型:
Article
署名作者:
VanderWeele, Tyler J.; Richardson, Thomas S.
署名单位:
Harvard University; Harvard T.H. Chan School of Public Health; University of Washington; University of Washington Seattle
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/12-AOS1019
发表日期:
2012
页码:
2128-2161
关键词:
directed acyclic graphs inference epistasis tests
摘要:
The sufficient-component cause framework assumes the existence of sets of sufficient causes that bring about an event. For a binary outcome and an arbitrary number of binary causes any set of potential outcomes can be replicated by positing a set of sufficient causes; typically this representation is not unique. A sufficient cause interaction is said to be present if within all representations there exists a sufficient cause in which two or more particular causes are all present. A singular interaction is said to be present if for some subset of individuals there is a unique minimal sufficient cause. Empirical and counterfactual conditions are given for sufficient cause interactions and singular interactions between an arbitrary number of causes. Conditions are given for cases in which none, some or all of a given set of causes affect the outcome monotonically. The relations between these results, interactions in linear statistical models and Pearl's probability of causation are discussed.