KULLBACK-LEIBLER AGGREGATION AND MISSPECIFIED GENERALIZED LINEAR MODELS

成果类型:
Article
署名作者:
Rigollet, Philippe
署名单位:
Princeton University
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/11-AOS961
发表日期:
2012
页码:
639-665
关键词:
statistical view Optimal Rates regression persistence selection
摘要:
In a regression setup with deterministic design, we study the pure aggregation problem and introduce a natural extension from the Gaussian distribution to distributions in the exponential family. While this extension bears strong connections with generalized linear models, it does not require identifiability of the parameter or even that the model on the systematic component is true. It is shown that this problem can be solved by constrained and/or penalized likelihood maximization and we derive sharp oracle inequalities that hold both in expectation and with high probability. Finally all the bounds are proved to be optimal in a minimax sense.