THE LIMIT DISTRIBUTION OF THE L∞-ERROR OF GRENANDER-TYPE ESTIMATORS
成果类型:
Article
署名作者:
Durot, Cecile; Kulikov, Vladimir N.; Lopuhaa, Hendrik P.
署名单位:
Delft University of Technology
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/12-AOS1015
发表日期:
2012
页码:
1578-1608
关键词:
Asymptotic Normality
monotone density
smooth monotone
brownian-motion
摘要:
Let f be a nonincreasing function defined on [0, 1]. Under standard regularity conditions, we derive the asymptotic distribution of the supremum norm of the difference between f and its Grenander-type estimator on sub-intervals of [0, 1]. The rate of convergence is found to be of order (n/logn)(-1/3) and the limiting distribution to be Gumbel.