MAXIMUM LIKELIHOOD ESTIMATION IN LOG-LINEAR MODELS

成果类型:
Article
署名作者:
Fienberg, Stephen E.; Rinaldo, Alessandro
署名单位:
Carnegie Mellon University
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/12-AOS986
发表日期:
2012
页码:
996-1023
关键词:
exponential-families contingency-tables geometry
摘要:
We study maximum likelihood estimation in log-linear models under conditional Poisson sampling schemes. We derive necessary and sufficient conditions for existence of the maximum likelihood estimator (MLE) of the model parameters and investigate estimability of the natural and mean-value parameters under a nonexistent MLE. Our conditions focus on the role of sampling zeros in the observed table. We situate our results within the framework of extended exponential families, and we exploit the geometric properties of log-linear models. We propose algorithms for extended maximum likelihood estimation that improve and correct the existing algorithms for log-linear model analysis.