l0-PENALIZED MAXIMUM LIKELIHOOD FOR SPARSE DIRECTED ACYCLIC GRAPHS

成果类型:
Article
署名作者:
Van de Geer, Sara; Buehlmann, Peter
署名单位:
Swiss Federal Institutes of Technology Domain; ETH Zurich
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/13-AOS1085
发表日期:
2013
页码:
536-567
关键词:
markov equivalence classes Lasso
摘要:
We consider the problem of regularized maximum likelihood estimation for the structure and parameters of a high-dimensional, sparse directed acyclic graphical (DAG) model with Gaussian distribution, or equivalently, of a Gaussian structural equation model. We show that the to-penalized maximum likelihood estimator of a DAG has about the same number of edges as the minimal-edge I-MAP (a DAG with minimal number of edges representing the distribution), and that it converges in Frobenius norm. We allow the number of nodes p to be much larger than sample size n but assume a sparsity condition and that any representation of the true DAG has at least a fixed proportion of its nonzero edge weights above the noise level. Our results do not rely on the faithfulness assumption nor on the restrictive strong faithfulness condition which are required for methods based on conditional independence testing such as the PC-algorithm.