ASYMPTOTIC POWER OF SPHERICITY TESTS FOR HIGH-DIMENSIONAL DATA

成果类型:
Article
署名作者:
Onatski, Alexei; Moreira, Marcelo J.; Hallin, Marc
署名单位:
University of Cambridge; Getulio Vargas Foundation; Universite Libre de Bruxelles
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/13-AOS1100
发表日期:
2013
页码:
1204-1231
关键词:
eigenvalue based detection COVARIANCE-MATRIX hypergeometric-functions Empirical distribution number signals distributions components wishart limit
摘要:
This paper studies the asymptotic power of tests of sphericity against perturbations in a single unknown direction as both the dimensionality of the data and the number of observations go to infinity. We establish the convergence, under the null hypothesis and contiguous alternatives, of the log ratio of the joint densities of the sample covariance eigenvalues to a Gaussian process indexed by the norm of the perturbation. When the perturbation norm is larger than the phase transition threshold studied in Baik, Ben Arous and Peche [Ann. Probab. 33 (2005) 1643-1697] the limiting process is degenerate, and discrimination between the null and the alternative is asymptotically certain. When the norm is below the threshold, the limiting process is nondegenerate, and the joint eigenvalue densities under the null and alternative hypotheses are mutually contiguous. Using the asymptotic theory of statistical experiments, we obtain asymptotic power envelopes and derive the asymptotic power for various sphericity tests in the contiguity region. In particular, we show that the asymptotic power of the Tracy-Widom-type tests is trivial (i.e., equals the asymptotic size), whereas that of the eigenvalue-based likelihood ratio test is strictly larger than the size, and close to the power envelope.