SPARSE PCA: OPTIMAL RATES AND ADAPTIVE ESTIMATION

成果类型:
Article
署名作者:
Cai, T. Tony; Ma, Zongming; Wu, Yihong
署名单位:
University of Pennsylvania; University of Illinois System; University of Illinois Urbana-Champaign
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/13-AOS1178
发表日期:
2013
页码:
3074-3110
关键词:
Principal component analysis high dimension power method CONVERGENCE Consistency approximation EIGENVALUE matrices
摘要:
Principal component analysis (PCA) is one of the most commonly used statistical procedures with a wide range of applications. This paper considers both minimax and adaptive estimation of the principal subspace in the high dimensional setting. Under mild technical conditions, we first establish the optimal rates of convergence for estimating the principal subspace which are sharp with respect to all the parameters, thus providing a complete characterization of the difficulty of the estimation problem in term of the convergence rate. The lower bound is obtained by calculating the local metric entropy and an application of Fano's lemma. The rate optimal estimator is constructed using aggregation, which, however, might not be computationally feasible. We then introduce an adaptive procedure for estimating the principal subspace which is fully data driven and can be computed efficiently. It is shown that the estimator attains the optimal rates of convergence simultaneously over a large collection of the parameter spaces. A key idea in our construction is a reduction scheme which reduces the sparse PCA problem to a high-dimensional multivariate regression problem. This method is potentially also useful for other related problems.