UNEXPECTED PROPERTIES OF BANDWIDTH CHOICE WHEN SMOOTHING DISCRETE DATA FOR CONSTRUCTING A FUNCTIONAL DATA CLASSIFIER
成果类型:
Article
署名作者:
Carroll, Raymond J.; Delaigle, Aurore; Hall, Peter
署名单位:
Texas A&M University System; Texas A&M University College Station; University of Melbourne
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/13-AOS1158
发表日期:
2013
页码:
2739-2767
关键词:
principal-components-analysis
regression
摘要:
The data functions that are studied in the course of functional data analysis are assembled from discrete data, and the level of smoothing that is used is generally that which is appropriate for accurate approximation of the conceptually smooth functions that were not actually observed. Existing literature shows that this approach is effective, and even optimal, when using functional data methods for prediction or hypothesis testing. However, in the present paper we show that this approach is not effective in classification problems. There a useful rule of thumb is that undersmoothing is often desirable, but there are several surprising qualifications to that approach. First, the effect of smoothing the training data can be more significant than that of smoothing the new data set to be classified; second, undersmoothing is not always the right approach, and in fact in some cases using a relatively large bandwidth can be more effective; and third, these perverse results are the consequence of very unusual properties of error rates, expressed as functions of smoothing parameters. For example, the orders of magnitude of optimal smoothing parameter choices depend on the signs and sizes of terms in an expansion of error rate, and those signs and sizes can vary dramatically from one setting to another, even for the same classifier.