GEMINI: GRAPH ESTIMATION WITH MATRIX VARIATE NORMAL INSTANCES

成果类型:
Article
署名作者:
Zhou, Shuheng
署名单位:
University of Michigan System; University of Michigan
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/13-AOS1187
发表日期:
2014
页码:
532-562
关键词:
dimensional covariance estimation nonconcave penalized likelihood selection MODEL CONVERGENCE Lasso
摘要:
Undirected graphs can be used to describe matrix variate distributions. In this paper, we develop new methods for estimating the graphical structures and underlying parameters, namely, the row and column covariance and inverse covariance matrices from the matrix variate data. Under sparsity conditions, we show that one is able to recover the graphs and covariance matrices with a single random matrix from the matrix variate normal distribution. Our method extends, with suitable adaptation, to the general setting where replicates are available. We establish consistency and obtain the rates of convergence in the operator and the Frobenius norm. We show that having replicates will allow one to estimate more complicated graphical structures and achieve faster rates of convergence. We provide simulation evidence showing that we can recover graphical structures as well as estimating the precision matrices, as predicted by theory.