ASYMPTOTIC EQUIVALENCE OF NONPARAMETRIC DIFFUSION AND EULER SCHEME EXPERIMENTS
成果类型:
Article
署名作者:
Genon-Catalot, Valentine; Laredo, Catherine
署名单位:
Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); Universite Paris Cite; Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); Universite Paris Cite; Universite Paris Saclay; INRAE; Universite Paris Saclay; Universite Paris Cite; Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); INRAE; INRAE; Universite Paris Cite; Universite Paris Saclay
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/14-AOS1216
发表日期:
2014
页码:
1145-1165
关键词:
statistical equivalence
DENSITY-ESTIMATION
white-noise
regression
nonequivalence
approximation
volatility
models
GARCH
摘要:
We prove a global asymptotic equivalence of experiments in the sense of Le Cam's theory. The experiments are a continuously observed diffusion with nonparametric drift and its Euler scheme. We focus on diffusions with nonconstant-known diffusion coefficient. The asymptotic equivalence is proved by constructing explicit equivalence mappings based on random time changes. The equivalence of the discretized observation of the diffusion and the corresponding Euler scheme experiment is then derived. The impact of these equivalence results is that it justifies the use of the Euler scheme instead of the discretized diffusion process for inference purposes.