THE SPATIAL DISTRIBUTION IN INFINITE DIMENSIONAL SPACES AND RELATED QUANTILES AND DEPTHS
成果类型:
Article
署名作者:
Chakraborty, Anirvan; Chaudhuri, Probal
署名单位:
Indian Statistical Institute; Indian Statistical Institute Kolkata
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/14-AOS1226
发表日期:
2014
页码:
1203-1231
关键词:
notion
摘要:
The spatial distribution has been widely used to develop various non-parametric procedures for finite dimensional multivariate data. In this paper, we investigate the concept of spatial distribution for data in infinite dimensional Banach spaces. Many technical difficulties are encountered in such spaces that are primarily due to the noncompactness of the closed unit ball. In this work, we prove some Glivenko-Cantelli and Donsker-type results for the empirical spatial distribution process in infinite dimensional spaces. The spatial quantiles in such spaces can be obtained by inverting the spatial distribution function. A Bahadur-type asymptotic linear representation and the associated weak convergence results for the sample spatial quantiles in infinite dimensional spaces are derived. A study of the asymptotic efficiency of the sample spatial median relative to the sample mean is carried out for some standard probability distributions in function spaces. The spatial distribution can be used to define the spatial depth in infinite dimensional Banach spaces, and we study the asymptotic properties of the empirical spatial depth in such spaces. We also demonstrate the spatial quantiles and the spatial depth using some real and simulated functional data.