ON THE BERNSTEIN-VON MISES PHENOMENON FOR NONPARAMETRIC BAYES PROCEDURES
成果类型:
Article
署名作者:
Castillo, Ismael; Nickl, Richard
署名单位:
Centre National de la Recherche Scientifique (CNRS); Sorbonne Universite; Universite Paris Cite; Centre National de la Recherche Scientifique (CNRS); University of Cambridge
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/14-AOS1246
发表日期:
2014
页码:
1941-1969
关键词:
gaussian white-noise
posterior distributions
density
THEOREM
models
regression
extremes
摘要:
We continue the investigation of Bernstein- von Mises theorems for non-parametric Bayes procedures from [Ann. Statist. 41 (2013) 1999-2028]. We introduce multiscale spaces on which nonparametric priors and posteriors are naturally defined, and prove Bernstein- von Mises theorems for a variety of priors in the setting of Gaussian nonparametric regression and in the i.i.d. sampling model. From these results we deduce several applications where posterior-based inference coincides with efficient frequentist procedures, including Donsker- and Kolmogorov-Smimov theorems for the random posterior cumulative distribution functions. We also show that multiscale posterior credible bands for the regression or density function are optimal frequentist confidence bands.