ADAPTIVE TESTING ON A REGRESSION FUNCTION AT A POINT

成果类型:
Article
署名作者:
Armstrong, Timothy
署名单位:
Yale University
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/15-AOS1342
发表日期:
2015
页码:
2086-2101
关键词:
asymptotic equivalence confidence identification
摘要:
We consider the problem of inference on a regression function at a point when the entire function satisfies a sign or shape restriction under the null. We propose a test that achieves the optimal minimax rate adaptively over a range of Holder classes, up to a log log n term, which we show to be necessary for adaptation. We apply the results to adaptive one-sided tests for the regression discontinuity parameter under a monotonicity restriction, the value of a monotone regression function at the boundary and the proportion of true null hypotheses in a multiple testing problem.