OPTIMAL SHRINKAGE ESTIMATION OF MEAN PARAMETERS IN FAMILY OF DISTRIBUTIONS WITH QUADRATIC VARIANCE

成果类型:
Article
署名作者:
Xie, Xianchao; Kou, S. C.; Brown, Lawrence
署名单位:
Harvard University; University of Pennsylvania
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/15-AOS1377
发表日期:
2016
页码:
564-597
关键词:
EMPIRICAL BAYES ESTIMATION Poisson Admissibility prediction vector
摘要:
This paper discusses the simultaneous inference of mean parameters in a family of distributions with quadratic variance function. We first introduce a class of semiparametric/parametric shrinkage estimators and establish their asymptotic optimality properties. Two specific cases, the location-scale family and the natural exponential family with quadratic variance function, are then studied in detail. We conduct a comprehensive simulation study to compare the performance of the proposed methods with existing shrinkage estimators. We also apply the method to real data and obtain encouraging results.