A GENERAL THEORY OF HYPOTHESIS TESTS AND CONFIDENCE REGIONS FOR SPARSE HIGH DIMENSIONAL MODELS

成果类型:
Article
署名作者:
Ning, Yang; Liu, Han
署名单位:
Cornell University; Princeton University
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/16-AOS1448
发表日期:
2017
页码:
158-195
关键词:
p-regression parameters variable selection asymptotic-behavior M-ESTIMATORS Lasso likelihood intervals p2/n
摘要:
We consider the problem of uncertainty assessment for low dimensional components in high dimensional models. Specifically, we propose a novel decorrelated score function to handle the impact of high dimensional nuisance parameters. We consider both hypothesis tests and confidence regions for generic penalized M-estimators. Unlike most existing inferential methods which are tailored for individual models, our method provides a general framework for high dimensional inference and is applicable to a wide variety of applications. In particular, we apply this general framework to study five illustrative examples: linear regression, logistic regression, Poisson regression, Gaussian graphical model and additive hazards model. For hypothesis testing, we develop general theorems to characterize the limiting distributions of the decorrelated score test statistic under both null hypothesis and local alternatives. These results provide asymptotic guarantees on the type I errors and local powers. For confidence region construction, we show that the decorrelated score function can be used to construct point estimators that are asymptotically normal and semiparametrically efficient. We further generalize this framework to handle the settings of misspecified models. Thorough numerical results are provided to back up the developed theory.