NONLINEAR SUFFICIENT DIMENSION REDUCTION FOR FUNCTIONAL DATA
成果类型:
Article
署名作者:
Li, Bing; Song, Jun
署名单位:
Pennsylvania Commonwealth System of Higher Education (PCSHE); Pennsylvania State University; Pennsylvania State University - University Park
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/16-AOS1475
发表日期:
2017
页码:
1059-1095
关键词:
sliced inverse regression
MODEL
formulation
摘要:
We propose a general theory and the estimation procedures for nonlinear sufficient dimension reduction where both the predictor and the response may be random functions. The relation between the response and predictor can be arbitrary and the sets of observed time points can vary from subject to subject. The functional and nonlinear nature of the problem leads to construction of two functional spaces: the first representing the functional data, assumed to be a Hilbert space, and the second characterizing nonlinearity, assumed to be a reproducing kernel Hilbert space. A particularly attractive feature of our construction is that the two spaces are nested, in the sense that the kernel for the second space is determined by the inner product of the first. We propose two estimators for this general dimension reduction problem, and establish the consistency and convergence rate for one of them. These asymptotic results are flexible enough to accommodate both fully and partially observed functional data. We investigate the performances of our estimators by simulations, and applied them to data sets about speech recognition and handwritten symbols.
来源URL: