ON THE EXPONENTIALLY WEIGHTED AGGREGATE WITH THE LAPLACE PRIOR
成果类型:
Article
署名作者:
Dalalyan, Arnak S.; Grappin, Edwin; Paris, Quentin
署名单位:
Institut Polytechnique de Paris; ENSAE Paris; Universite Paris Saclay; HSE University (National Research University Higher School of Economics)
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/17-AOS1626
发表日期:
2018
页码:
2452-2478
关键词:
sharp oracle inequalities
pac-bayesian bounds
variable selection
matrix completion
posterior concentration
statistical-inference
unknown smoothness
Optimal Rates
rank
regression
摘要:
In this paper, we study the statistical behaviour of the Exponentially Weighted Aggregate (EWA) in the problem of high-dimensional regression with fixed design. Under the assumption that the underlying regression vector is sparse, it is reasonable to use the Laplace distribution as a prior. The resulting estimator and, specifically, a particular instance of it referred to as the Bayesian lasso, was already used in the statistical literature because of its computational convenience, even though no thorough mathematical analysis of its statistical properties was carried out. The present work fills this gap by establishing sharp oracle inequalities for the EWA with the Laplace prior. These inequalities show that if the temperature parameter is small, the EWA with the Laplace prior satisfies the same type of oracle inequality as the lasso estimator does, as long as the quality of estimation is measured by the prediction loss. Extensions of the proposed methodology to the problem of prediction with low-rank matrices are considered.