PRINCIPAL COMPONENT ANALYSIS FOR FUNCTIONAL DATA ON RIEMANNIAN MANIFOLDS AND SPHERES
成果类型:
Article
署名作者:
Dai, Xiongtao; Mueller, Hans-Georg
署名单位:
University of California System; University of California Davis
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/17-AOS1660
发表日期:
2018
页码:
3334-3361
关键词:
extrinsic sample means
inference
models
摘要:
Functional data analysis on nonlinear manifolds has drawn recent interest. Sphere-valued functional data, which are encountered, for example, as movement trajectories on the surface of the earth are an important special case. We consider an intrinsic principal component analysis for smooth Riemannian manifold-valued functional data and study its asymptotic properties. Riemannian functional principal component analysis (RFPCA) is carried out by first mapping the manifold-valued data through Riemannian logarithm maps to tangent spaces around the Frechet mean function, and then performing a classical functional principal component analysis (FPCA) on the linear tangent spaces. Representations of the Riemannian manifold-valued functions and the eigenfunctions on the original manifold are then obtained with exponential maps. The tangent-space approximation yields upper bounds to residual variances if the Riemannian manifold has nonnegative curvature. We derive a central limit theorem for the mean function, as well as root-n uniform convergence rates for other model components. Our applications include a novel framework for the analysis of longitudinal compositional data, achieved by mapping longitudinal compositional data to trajectories on the sphere, illustrated with longitudinal fruit fly behavior patterns. RFPCA is shown to outperform an unrestricted FPCA in terms of trajectory recovery and prediction in applications and simulations.