ORACLE INEQUALITIES FOR SPARSE ADDITIVE QUANTILE REGRESSION IN REPRODUCING KERNEL HILBERT SPACE
成果类型:
Article
署名作者:
Lv, Shaogao; Lin, Huazhen; Lian, Heng; Huang, Jian
署名单位:
Nanjing Audit University; Southwestern University of Finance & Economics - China; City University of Hong Kong; University of Iowa
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/17-AOS1567
发表日期:
2018
页码:
781-813
关键词:
VARIABLE SELECTION
model selection
Optimal Rates
Lasso
estimators
shrinkage
摘要:
This paper considers the estimation of the sparse additive quantile regression (SAQR) in high-dimensional settings. Given the nonsmooth nature of the quantile loss function and the nonparametric complexities of the component function estimation, it is challenging to analyze the theoretical properties of ultrahigh-dimensional SAQR. We propose a regularized learning approach with a two-fold Lasso-type regularization in a reproducing kernel Hilbert space (RKHS) for SAQR. We establish nonasymptotic oracle inequalities for the excess risk of the proposed estimator without any coherent conditions. If additional assumptions including an extension of the restricted eigenvalue condition are satisfied, the proposed method enjoys sharp oracle rates without the light tail requirement. In particular, the proposed estimator achieves the minimax lower bounds established for sparse additive mean regression. As a by-product, we also establish the concentration inequality for estimating the population mean when the general Lipschitz loss is involved. The practical effectiveness of the new method is demonstrated by competitive numerical results.
来源URL: