VALID CONFIDENCE INTERVALS FOR POST-MODEL-SELECTION PREDICTORS

成果类型:
Article
署名作者:
Bachoc, Francois; Leeb, Hannes; Potscher, Benedikt M.
署名单位:
Universite de Toulouse; Universite Toulouse III - Paul Sabatier; University of Vienna
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/18-AOS1721
发表日期:
2019
页码:
1475-1504
关键词:
VARIABLE SELECTION inference estimators likelihood
摘要:
We consider inference post-model-selection in linear regression. In this setting, Berk et al. [Ann. Statist. 41 (2013a) 802-837] recently introduced a class of confidence sets, the so-called PoSI intervals, that cover a certain nonstandard quantity of interest with a user-specified minimal coverage probability, irrespective of the model selection procedure that is being used. In this paper, we generalize the PoSI intervals to confidence intervals for post-model-selection predictors.