MAXIMUM LIKELIHOOD ESTIMATION IN TRANSFORMED LINEAR REGRESSION WITH NONNORMAL ERRORS
成果类型:
Article
署名作者:
Tong, Xingwei; Gao, Fuqing; Chen, Kani; Cai, Dingjiao; Sun, Jianguo
署名单位:
Beijing Normal University; Wuhan University; Hong Kong University of Science & Technology; Henan University of Economics & Law; University of Missouri System; University of Missouri Columbia
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/18-AOS1726
发表日期:
2019
页码:
1864-1892
关键词:
semiparametric estimation
efficient estimation
rank estimation
models
摘要:
This paper discusses the transformed linear regression with non-normal error distributions, a problem that often occurs in many areas such as economics and social sciences as well as medical studies. The linear transformation model is an important tool in survival analysis partly due to its flexibility. In particular, it includes the Cox model and the proportional odds model as special cases when the error follows the extreme value distribution and the logistic distribution, respectively. Despite the popularity and generality of linear transformation models, however, there is no general theory on the maximum likelihood estimation of the regression parameter and the transformation function. One main difficulty for this is that the transformation function near the tails diverges to infinity and can be quite unstable. It affects the accuracy of the estimation of the transformation function and regression parameters. In this paper, we develop the maximum likelihood estimation approach and provide the near optimal conditions on the error distribution under which the consistency and asymptotic normality of the resulting estimators can be established. Extensive numerical studies suggest that the methodology works well, and an application to the data on a typhoon forecast is provided.