AN OPERATOR THEORETIC APPROACH TO NONPARAMETRIC MIXTURE MODELS

成果类型:
Article
署名作者:
Vandermeulen, Robert A.; Scott, Clayton D.
署名单位:
University of Kaiserslautern; University of Michigan System; University of Michigan
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/18-AOS1762
发表日期:
2019
页码:
2704-2733
关键词:
identifiability decompositions
摘要:
When estimating finite mixture models, it is common to make assumptions on the mixture components, such as parametric assumptions. In this work, we make no distributional assumptions on the mixture components and instead assume that observations from the mixture model are grouped, such that observations in the same group are known to be drawn from the same mixture component. We precisely characterize the number of observations n per group needed for the mixture model to be identifiable, as a function of the number m of mixture components. In addition to our assumption-free analysis, we also study the settings where the mixture components are either linearly independent or jointly irreducible. Furthermore, our analysis considers two kinds of identifiability, where the mixture model is the simplest one explaining the data, and where it is the only one. As an application of these results, we precisely characterize identifiability of multinomial mixture models. Our analysis relies on an operator-theoretic framework that associates mixture models in the grouped-sample setting with certain infinite-dimensional tensors. Based on this framework, we introduce a general spectral algorithm for recovering the mixture components.