GOODNESS-OF-FIT TESTS FOR THE FUNCTIONAL LINEAR MODEL BASED ON RANDOMLY PROJECTED EMPIRICAL PROCESSES
成果类型:
Article
署名作者:
Cuesta-Albertos, Juan A.; Garcia-Portugues, Eduardo; Febrero-Bande, Manuel; Gonzalez-Manteiga, Wenceslao
署名单位:
Universidad de Cantabria; Universidade de Santiago de Compostela
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/18-AOS1693
发表日期:
2019
页码:
439-467
关键词:
regression
checks
form
摘要:
We consider marked empirical processes indexed by a randomly projected functional covariate to construct goodness-of-fit tests for the functional linear model with scalar response. The test statistics are built from continuous functionals over the projected process, resulting in computationally efficient tests that exhibit root-n convergence rates and circumvent the curse of dimensionality. The weak convergence of the empirical process is obtained conditionally on a random direction, whilst the almost surely equivalence between the testing for significance expressed on the original and on the projected functional covariate is proved. The computation of the test in practice involves calibration by wild bootstrap resampling and the combination of several p-values, arising from different projections, by means of the false discovery rate method. The finite sample properties of the tests are illustrated in a simulation study for a variety of linear models, underlying processes, and alternatives. The software provided implements the tests and allows the replication of simulations and data applications.