THE ZIG-ZAG PROCESS AND SUPER-EFFICIENT SAMPLING FOR BAYESIAN ANALYSIS OF BIG DATA

成果类型:
Article
署名作者:
Ierkens, Joris B.; Fearnhead, Paul; Roberts, Gareth
署名单位:
Delft University of Technology; Delft University of Technology; Lancaster University; University of Warwick
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/18-AOS1715
发表日期:
2019
页码:
1288-1320
关键词:
long-time behavior variance reduction simulation
摘要:
Standard MCMC methods can scale poorly to big data settings due to the need to evaluate the likelihood at each iteration. There have been a number of approximate MCMC algorithms that use sub-sampling ideas to reduce this computational burden, but with the drawback that these algorithms no longer target the true posterior distribution. We introduce a new family of Monte Carlo methods based upon a multidimensional version of the Zig-Zag process of [Ann. Appl. Probab. 27 (2017) 846-882], a continuous-time piecewise deterministic Markov process. While traditional MCMC methods are reversible by construction (a property which is known to inhibit rapid convergence) the Zig-Zag process offers a flexible nonreversible alternative which we observe to often have favourable convergence properties. We show how the Zig-Zag process can be simulated without discretisation error, and give conditions for the process to be ergodic. Most importantly, we introduce a sub-sampling version of the Zig-Zag process that is an example of an exact approximate scheme, that is, the resulting approximate process still has the posterior as its stationary distribution. Furthermore, if we use a control-variate idea to reduce the variance of our unbiased estimator, then the Zig-Zag process can be super-efficient: after an initial preprocessing step, essentially independent samples from the posterior distribution are obtained at a computational cost which does not depend on the size of the data.
来源URL: