THE HARDNESS OF CONDITIONAL INDEPENDENCE TESTING AND THE GENERALISED COVARIANCE MEASURE

成果类型:
Article
署名作者:
Shah, Rajen D.; Peters, Jonas
署名单位:
University of Cambridge; University of Copenhagen
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/19-AOS1857
发表日期:
2020
页码:
1514-1538
关键词:
identification models
摘要:
It is a common saying that testing for conditional independence, that is, testing whether whether two random vectors X and Y are independent, given Z, is a hard statistical problem if Z is a continuous random variable (or vector). In this paper, we prove that conditional independence is indeed a particularly difficult hypothesis to test for. Valid statistical tests are required to have a size that is smaller than a pre-defined significance level, and different tests usually have power against a different class of alternatives. We prove that a valid test for conditional independence does not have power against any alternative. Given the nonexistence of a uniformly valid conditional independence test, we argue that tests must be designed so their suitability for a particular problem may be judged easily. To address this need, we propose in the case where X and Y are univariate to nonlinearly regress X on Z, and Y on Z and then compute a test statistic based on the sample covariance between the residuals, which we call the generalised covariance measure (GCM). We prove that validity of this form of test relies almost entirely on the weak requirement that the regression procedures are able to estimate the conditional means X given Z, and Y given Z, at a slow rate. We extend the methodology to handle settings where X and Y may be multi-variate or even high dimensional. While our general procedure can be tailored to the setting at hand by combining it with any regression technique, we develop the theoretical guarantees for kernel ridge regression. A simulation study shows that the test based on GCM is competitive with state of the art conditional independence tests. Code is available as the R package GeneralisedCovarianceMeasure on CRAN.