MODEL-ASSISTED INFERENCE FOR TREATMENT EFFECTS USING REGULARIZED CALIBRATED ESTIMATION WITH HIGH-DIMENSIONAL DATA
成果类型:
Article
署名作者:
Tan, Zhiqiang
署名单位:
Rutgers University System; Rutgers University New Brunswick
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/19-AOS1824
发表日期:
2020
页码:
811-837
关键词:
confidence-intervals
propensity score
selection
parameters
efficient
BIAS
摘要:
Consider the problem of estimating average treatment effects when a large number of covariates are used to adjust for possible confounding through outcome regression and propensity score models. We develop new methods and theory to obtain not only doubly robust point estimators for average treatment effects, which remain consistent if either the propensity score model or the outcome regression model is correctly specified, but also model-assisted confidence intervals, which are valid when the propensity score model is correctly specified but the outcome model may be misspecified. With a linear outcome model, the confidence intervals are doubly robust, that is, being also valid when the outcome model is correctly specified but the propensity score model may be misspecified. Our methods involve regularized calibrated estimators with Lasso penalties but carefully chosen loss functions, for fitting propensity score and outcome regression models. We provide high-dimensional analysis to establish the desired properties of our methods under comparable sparsity conditions to previous results, which give valid confidence intervals when both the propensity score and outcome models are correctly specified. We present simulation studies and an empirical application which demonstrate advantages of the proposed methods compared with related methods based on regularized maximum likelihood estimation. The methods are implemented in the R package RCAL.
来源URL: