THE COST OF PRIVACY: OPTIMAL RATES OF CONVERGENCE FOR PARAMETER ESTIMATION WITH DIFFERENTIAL PRIVACY
成果类型:
Article
署名作者:
Cai, T. Tony; Wang, Yichen; Zhang, Linjun
署名单位:
University of Pennsylvania; Rutgers University System; Rutgers University New Brunswick
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/21-AOS2058
发表日期:
2021
页码:
2825-2850
关键词:
statistical estimation
摘要:
Privacy-preserving data analysis is a rising challenge in contemporary statistics, as the privacy guarantees of statistical methods are often achieved at the expense of accuracy. In this paper, we investigate the tradeoff between statistical accuracy and privacy in mean estimation and linear regression, under both the classical low-dimensional and modern high-dimensional settings. A primary focus is to establish minimax optimality for statistical estimation with the (s, 8)-differential privacy constraint. By refining the tracing adversary technique for lower bounds in the theoretical computer science literature, we improve existing minimax lower bound for low-dimensional mean estimation and establish new lower bounds for high-dimensional mean estimation and linear regression problems. We also design differentially private algorithms that attain the minimax lower bounds up to logarithmic factors. In particular, for high-dimensional linear regression, a novel private iterative hard thresholding algorithm is proposed. The numerical performance of differentially private algorithms is demonstrated by simulation studies and applications to real data sets.