A CONVEX OPTIMIZATION APPROACH TO HIGH-DIMENSIONAL SPARSE QUADRATIC DISCRIMINANT ANALYSIS

成果类型:
Article
署名作者:
Cai, T. Tony; Zhang, Linjun
署名单位:
University of Pennsylvania; Rutgers University System; Rutgers University New Brunswick
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/20-AOS2012
发表日期:
2021
页码:
1537-1568
关键词:
NETWORKS regression tumor
摘要:
In this paper, we study high-dimensional sparse Quadratic Discriminant Analysis (QDA) and aim to establish the optimal convergence rates for the classification error. Minimax lower bounds are established to demonstrate the necessity of structural assumptions such as sparsity conditions on the discriminating direction and differential graph for the possible construction of consistent high-dimensional QDA rules. We then propose a classification algorithm called SDAR using constrained convex optimization under the sparsity assumptions. Both minimax upper and lower bounds are obtained and this classification rule is shown to be simultaneously rate optimal over a collection of parameter spaces, up to a logarithmic factor. Simulation studies demonstrate that SDAR performs well numerically. The algorithm is also illustrated through an analysis of prostate cancer data and colon tissue data. The methodology and theory developed for high-dimensional QDA for two groups in the Gaussian setting are also extended to multigroup classification and to classification under the Gaussian copula model.