FOUNDATIONS OF STRUCTURAL CAUSAL MODELS WITH CYCLES AND LATENT VARIABLES
成果类型:
Article
署名作者:
Bongers, Stephan; Forre, Patrick; Peters, Jonas; Mooij, Joris M.
署名单位:
University of Amsterdam; University of Copenhagen; University of Amsterdam
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/21-AOS2064
发表日期:
2021
页码:
2885-2915
关键词:
markov properties
path diagrams
INDEPENDENCE
DISCOVERY
margins
graphs
摘要:
Structural causal models (SCMs), also known as (nonparametric) structural equation models (SEMs), are widely used for causal modeling purposes. In particular, acyclic SCMs, also known as recursive SEMs, form a well-studied subclass of SCMs that generalize causal Bayesian networks to allow for latent confounders. In this paper, we investigate SCMs in a more general setting, allowing for the presence of both latent confounders and cycles. We show that in the presence of cycles, many of the convenient properties of acyclic SCMs do not hold in general: they do not always have a solution; they do not always induce unique observational, interventional and counterfactual distributions; a marginalization does not always exist, and if it exists the marginal model does not always respect the latent projection; they do not always satisfy a Markov property; and their graphs are not always consistent with their causal semantics. We prove that for SCMs in general each of these properties does hold under certain solvability conditions. Our work generalizes results for SCMs with cycles that were only known for certain special cases so far. We introduce the class of simple SCMs that extends the class of acyclic SCMs to the cyclic setting, while preserving many of the convenient properties of acyclic SCMs. With this paper, we aim to provide the foundations for a general theory of statistical causal modeling with SCMs.