HIGH-DIMENSIONAL NONPARAMETRIC DENSITY ESTIMATION VIA SYMMETRY AND SHAPE CONSTRAINTS

成果类型:
Article
署名作者:
Xu, Min; Samworth, Richard J.
署名单位:
Rutgers University System; Rutgers University New Brunswick; University of Cambridge
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/20-AOS1972
发表日期:
2021
页码:
650-672
关键词:
摘要:
We tackle the problem of high-dimensional nonparametric density estimation by taking the class of log-concave densities on R-p and incorporating within it symmetry assumptions, which facilitate scalable estimation algorithms and can mitigate the curse of dimensionality. Our main symmetry assumption is that the super-level sets of the density are K-homothetic (i.e., scalar multiples of a convex body K subset of R-p). When K is known, we prove that the K-homothetic log-concave maximum likelihood estimator based on n independent observations from such a density achieves the minimax optimal rate of convergence with respect to, for example, squared Hellinger loss, of order n(-4/5), independent of p. Moreover, we show that the estimator is adaptive in the sense that if the data generating density admits a special form, then a nearly parametric rate may be attained. We also provide worst case and adaptive risk bounds in cases where K is only known up to a positive definite transformation, and where it is completely unknown and must be estimated nonparametrically. Our estimation algorithms are fast even when n and p are on the order of hundreds of thousands, and we illustrate the strong finite-sample performance of our methods on simulated data.
来源URL: