APPROXIMATE KERNEL PCA: COMPUTATIONAL VERSUS STATISTICAL TRADE-OFF
成果类型:
Article
署名作者:
Sriperumbudur, Bharath K.; Sterge, Nicholas
署名单位:
Pennsylvania Commonwealth System of Higher Education (PCSHE); Pennsylvania State University; Pennsylvania State University - University Park
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/22-AOS2204
发表日期:
2022
页码:
2713-2736
关键词:
component analysis
nystrom method
gram matrix
摘要:
Kernel methods are powerful learning methodologies that allow to perform nonlinear data analysis. Despite their popularity, they suffer from poor scalability in big data scenarios. Various approximation methods, including random feature approximation, have been proposed to alleviate the problem. However, the statistical consistency of most of these approximate kernel methods is not well understood except for kernel ridge regression wherein it has been shown that the random feature approximation is not only computationally efficient but also statistically consistent with a minimax optimal rate of convergence. In this paper, we investigate the efficacy of random feature approximation in the context of kernel principal component analysis (KPCA) by studying the trade-off between computational and statistical behaviors of approximate KPCA. We show that the approximate KPCA is both computationally and statistically efficient compared to KPCA in terms of the error associated with reconstructing a kernel function based on its projection onto the corresponding eigenspaces. The analysis hinges on Bernstein-type inequalities for the operator and Hilbert-Schmidt norms of a self-adjoint Hilbert-Schmidt operator-valued U-statistics, which are of independent interest.
来源URL: