OPTIMAL REACH ESTIMATION AND METRIC LEARNING
成果类型:
Article
署名作者:
Aamari, Eddie; Berenfeld, Clement; Levrard, Clement
署名单位:
Sorbonne Universite; Universite Paris Cite; University of Potsdam
刊物名称:
ANNALS OF STATISTICS
ISSN/ISSBN:
0090-5364
DOI:
10.1214/23-AOS2281
发表日期:
2023
页码:
1086-1108
关键词:
manifold estimation
rates
CONVERGENCE
摘要:
We study the estimation of the reach, an ubiquitous regularity parameter in manifold estimation and geometric data analysis. Given an i.i.d. sample vide optimal nonasymptotic bounds for the estimation of its reach. We build upon a formulation of the reach in terms of maximal curvature on one hand and geodesic metric distortion on the other. The derived rates are adaptive, with rates depending on whether the reach of M arises from curvature or from a bottleneck structure. In the process we derive optimal geodesic metric estimation bounds.