THE CENTRAL LIMIT THEOREM FOR EUCLIDEAN MINIMAL SPANNING TREES I
成果类型:
Article
署名作者:
Lee, Sungchul
署名单位:
National University of Singapore
刊物名称:
ANNALS OF APPLIED PROBABILITY
ISSN/ISSBN:
1050-5164
发表日期:
1997
页码:
996-1020
关键词:
摘要:
Let {X-i : i >= 1} be i.i.d. with uniform distribution [-1/2, 1/2](d), d >= 2, and let T-n be a minimal spanning tree on {X-1,..., X-n}. For each strictly positive integer alpha, let N({X-1,..., X-n}; alpha) be the number of vertices of degree alpha in T-n. Then, for each alpha such that P(N({X-1,..., X alpha+1}; alpha) = 1. > 0, we prove a central limit theorem for N({X-1,..., X-n}; alpha).