Asymptotic behavior of absorbing Markov chains conditional on nonabsorption for applications in conservation biology
成果类型:
Article
署名作者:
Gosselin, F
署名单位:
Universite PSL; Ecole Pratique des Hautes Etudes (EPHE); Institut Agro; Montpellier SupAgro; CIRAD; Centre National de la Recherche Scientifique (CNRS); Institut de Recherche pour le Developpement (IRD); Universite Paul-Valery; Universite de Montpellier
刊物名称:
ANNALS OF APPLIED PROBABILITY
ISSN/ISSBN:
1050-5164
DOI:
10.1214/aoap/998926993
发表日期:
2001
页码:
261-284
关键词:
quasi-stationary distributions
branching-processes
ergodic properties
limit-theorem
摘要:
We find a Lyapunov-ty pe sufficient condition for discrete-time Markov chains on a countable state space including an absorbing set to almost surely reach this absorbing set and to asymptotically stabilize conditional on nonabsorption. This result is applied to Bienayme-Galton-Watson-like branching processes in which the offspring distribution depends on the current population size. This yields a generalization of the Yaglom limit. The techniques used mainly rely on the spectral theory of linear operators on Banach spaces and especially on the notion of quasi-compact linear operator.