Optimal scaling of mala for nonlinear regression
成果类型:
Article
署名作者:
Breyer, LA; Piccioni, M; Scarlatti, S
署名单位:
Lancaster University; G d'Annunzio University of Chieti-Pescara; Sapienza University Rome
刊物名称:
ANNALS OF APPLIED PROBABILITY
ISSN/ISSBN:
1050-5164
DOI:
10.1214/105051604000000369
发表日期:
2004
页码:
1479-1505
关键词:
Diffusions
metropolis
摘要:
We address the problem of simulating efficiently from the posterior distribution over the parameters of a particular class of nonlinear regression models using a Langevin-Metropolis sampler. It is shown that as the number N of parameters increases, the proposal variance must scale as N-1/3 in order to converge to a diffusion. This generalizes previous results of Roberts and Rosenthal [J. R. Stat. Soc. Ser B Stat. Methodol. 60 (1998) 255-268] for the i.i.d. case, showing the robustness of their analysis.
来源URL: