Statistical Romberg extrapolation: A new variance reduction method and applications to option pricing
成果类型:
Article
署名作者:
Kebaier, A
署名单位:
Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); Universite Paris-Est-Creteil-Val-de-Marne (UPEC); Universite Gustave-Eiffel
刊物名称:
ANNALS OF APPLIED PROBABILITY
ISSN/ISSBN:
1050-5164
DOI:
10.1214/105051605000000511
发表日期:
2005
页码:
2681-2705
关键词:
STOCHASTIC DIFFERENTIAL-EQUATIONS
euler method
error
摘要:
We study the approximation of Ef(X-T) by a Monte Carlo algorithm, where X is the solution of a stochastic differential equation and f is a given function. We introduce a new variance reduction method, which can be viewed as a statistical analogue of Romberg extrapolation method. Namely, we use two Euler schemes with steps delta and delta(beta), 0 < beta < 1. This leads to an algorithm which, for a given level of the statistical error, has a complexity significantly lower than the complexity of the standard Monte Carlo method. We analyze the asymptotic error of this algorithm in the context of general (possibly degenerate) diffusions. In order to find the optimal beta (which turns out to be beta = 1/2), we establish a central limit: type theorem, based on a result of Jacod and Protter for the asymptotic distribution of the error in the Euler scheme. We test our method on various examples. In particular, we adapt it to Asian options. In this setting, we have a CLT and, as a by-product, an explicit expansion of the discretization error.