Mixed poisson approximation of node depth distributions in random binary search trees
成果类型:
Article
署名作者:
Grübel, R; Stefanoski, N
署名单位:
Leibniz University Hannover
刊物名称:
ANNALS OF APPLIED PROBABILITY
ISSN/ISSBN:
1050-5164
DOI:
10.1214/105051604000000611
发表日期:
2005
页码:
279-297
关键词:
distances
摘要:
We investigate the distribution of the depth of a node containing a specific key or, equivalently, the number of steps needed to retrieve an item stored in a randomly grown binary search tree. Using a representation in terms of mixed and compounded standard distributions, we derive approximations by Poisson and mixed Poisson distributions; these lead to asymptotic normality results. We are particularly interested in the influence of the key value on the distribution of the node depth. Methodologically our message is that the explicit representation may provide additional insight if compared to the standard approach that is based on the recursive structure of the trees. Further, in order to exhibit the influence of the key on the distributional asymptotics, a suitable choice of distance of probability distributions is important. Our results are also applicable in connection with the number of recursions needed in Hoare's [Comm. ACM 4 (1961) 321-322] selection algorithm FIND.
来源URL: