Exchangeable partitions derived from Markovian coalescents
成果类型:
Article
署名作者:
Dong, Rui; Gnedin, Alexander; Pitman, Jim
署名单位:
University of California System; University of California Berkeley; Utrecht University
刊物名称:
ANNALS OF APPLIED PROBABILITY
ISSN/ISSBN:
1050-5164
DOI:
10.1214/105051607000000069
发表日期:
2007
页码:
1172-1201
关键词:
sampling distributions
multiple collisions
neutral alleles
REPRESENTATION
CONVERGENCE
descent
mergers
models
lines
摘要:
Kingman derived the Ewens sampling formula for random partitions describing the genetic variation in a neutral mutation model defined by a Poisson process of mutations along lines of descent governed by a simple coalescent process and observed that similar methods could be applied to more complex models. Mohle described the recursion which determines the generalization of the Ewens sampling formula in the situation where the lines of descent are governed by a Lambda-coalescent, which allows multiple mergers. Here, we show that the basic integral representation of transition rates for the Lambda-coalescent is forced by sampling consistency under more general assumptions on the coalescent process. Exploiting an analogy with the theory of regenerative partition structures, we provide various characterizations of the associated partition structures in terms of discrete-time Markov chains.