The tracy-widom limit for the largest eigenvalues of singular complex wishart matrices
成果类型:
Article
署名作者:
Onatski, Alexei
署名单位:
Columbia University
刊物名称:
ANNALS OF APPLIED PROBABILITY
ISSN/ISSBN:
1050-5164
DOI:
10.1214/07-AAP454
发表日期:
2008
页码:
470-490
关键词:
sample covariance matrices
spacing distributions
number
arbitrage
models
摘要:
This paper extends the work of E1 Karoui [Ann. Probab. 35 (2007) 663-714] which finds the Tracy-Widom limit for the largest eigenvalue of a nonsingular p-dimensional complex Wishart matrix WC (Omega(p), n) to the case of several of the largest eigenvalues of the possibly singular (n < p) matrix WC(Omega(p), n). As a byproduct, we extend all results of Baik, Ben Arous and Peche [Ann. Probab. 33 (2005) 1643-1697] to the singular Wishart matrix case. We apply our findings to obtain a 95% confidence set for the number of common risk factors in excess stock returns.