SUBCRITICAL REGIMES IN SOME MODELS OF CONTINUUM PERCOLATION
成果类型:
Article
署名作者:
Gouere, Jean-Baptiste
署名单位:
Universite de Orleans
刊物名称:
ANNALS OF APPLIED PROBABILITY
ISSN/ISSBN:
1050-5164
DOI:
10.1214/08-AAP575
发表日期:
2009
页码:
1292-1318
关键词:
Stable marriage
Poisson
lebesgue
摘要:
We consider some continuum percolation models. We are mainly interested in giving some sufficient conditions for the absence of percolation. We give some general conditions and then focus on two examples. The first one is a multiscale percolation model based on the Boolean model. It was introduced by Meester and Roy and subsequently studied by Menshikov, Popov and Vachkovskaia. The second one is based on the stable marriage of Poisson and Lebesgue introduced by Hoffman, Holroyd and Peres and whose percolation properties have been studied by Freire, Popov and Vachkovskaia.