ROBUST ADAPTIVE IMPORTANCE SAMPLING FOR NORMAL RANDOM VECTORS

成果类型:
Article
署名作者:
Jourdain, Benjamin; Lelong, Jerome
署名单位:
Institut Polytechnique de Paris; ENSTA Paris
刊物名称:
ANNALS OF APPLIED PROBABILITY
ISSN/ISSBN:
1050-5164
DOI:
10.1214/09-AAP595
发表日期:
2009
页码:
1687-1718
关键词:
摘要:
Adaptive Monte Carlo methods are very efficient techniques designed to tune simulation estimators on-line. In this work, we present an alternative to stochastic approximation to tune the optimal change of measure in the context of importance sampling for normal random vectors. Unlike stochastic approximation, which requires very fine tuning in practice, we propose to use sample average approximation and deterministic optimization techniques to devise a robust and fully automatic variance reduction methodology. The same samples are used in the sample optimization of the importance sampling parameter and in the Monte Carlo computation of the expectation of interest with the optimal measure computed in the previous step. We prove that this highly dependent Monte Carlo estimator is convergent and satisfies a central limit theorem with the optimal limiting variance. Numerical experiments confirm the performance of this estimator: in comparison with the crude Monte Carlo method, the computation time needed to achieve a given precision is divided by a factor between 3 and 15.
来源URL: