TRAVELING WAVES AND HOMOGENEOUS FRAGMENTATION

成果类型:
Article
署名作者:
Berestycki, J.; Harris, S. C.; Kyprianou, A. E.
署名单位:
Sorbonne Universite; Universite Paris Cite; University of Bath
刊物名称:
ANNALS OF APPLIED PROBABILITY
ISSN/ISSBN:
1050-5164
DOI:
10.1214/10-AAP733
发表日期:
2011
页码:
1749-1794
关键词:
fixed-points martingale convergence equation BEHAVIOR
摘要:
We formulate the notion of the classical Fisher-Kolmogorov-Petrovskii-Piscounov (FKPP) reaction diffusion equation associated with a homogeneous conservative fragmentation process and study its traveling waves. Specifically, we establish existence, uniqueness and asymptotics. In the spirit of classical works such as McKean [Comm. Pure Appl. Math. 28 (1975) 323-331] and [Comm. Pure Appl. Math. 29 (1976) 553-554], Neveu [In Seminar on Stochastic Processes (1988) 223-242 Birkh user] and Chauvin [Ann. Probab. 19 (1991) 1195-1205], our analysis exposes the relation between traveling waves and certain additive and multiplicative martingales via laws of large numbers which have been previously studied in the context of Crump-Mode-Jagers (CMJ) processes by Nerman [Z. Wahrsch. Verw. Gebiete 57 (1981) 365-395] and in the context of fragmentation processes by Bertoin and Martinez [Adv. in Appl. Probab. 37 (2005) 553-570] and Harris, Knobloch and Kyprianou [Ann. Inst. H. Poincare Probab. Statist. 46 (2010) 119-134]. The conclusions and methodology presented here appeal to a number of concepts coming from the theory of branching random walks and branching Brownian motion (cf. Harris [Proc. Roy. Soc. Edinburgh Sect. A 129 (1999) 503-517] and Biggins and Kyprianou [Electr. J. Probab. 10 (2005) 609-631]) showing their mathematical robustness even within the context of fragmentation theory.