A DIFFUSION APPROXIMATION THEOREM FOR A NONLINEAR PDE WITH APPLICATION TO RANDOM BIREFRINGENT OPTICAL FIBERS

成果类型:
Article
署名作者:
de Bouard, A.; Gazeau, M.
署名单位:
Centre National de la Recherche Scientifique (CNRS); CNRS - National Institute for Mathematical Sciences (INSMI); Institut Polytechnique de Paris; Ecole Polytechnique
刊物名称:
ANNALS OF APPLIED PROBABILITY
ISSN/ISSBN:
1050-5164
DOI:
10.1214/11-AAP839
发表日期:
2012
页码:
2460-2504
关键词:
ordinary differential-equations polarization mode dispersion varying birefringence schrodinger-equation decorrelation propagation noise
摘要:
In this article we propose a generalization of the theory of diffusion approximation for random ODE to a nonlinear system of random Schrodinger equations. This system arises ill the study of pulse propagation in randomly birefringent optical fibers. We first show existence and uniqueness of solutions for the random PDE and the limiting equation. We follow the work of Gamier and Marty [Wave Motion 43 (2006) 544-560], Marty [Problemes d'evolution en milieux aleatoires: Theoremes limites, schemas numeriques et applications en optique (2005) Univ. Paul Sabatier], where a linear electric field is considered, and we get an asymptotic dynamic for the nonlinear electric field.